Journal of OrganometallicChemistry, 54 (1973) 375–383 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE NATURE OF THE SYSTEM $(\pi$ -C₄H₇PdCl)₂-ELECTRON DONOR FROM ¹H, ¹³C AND ³¹P NMR SPECTROSCOPIC AND ELECTRODIALYSIS STUDIES

III. $(\pi - C_4 H_7 PdCl)_2$ -DIMETHYLSULFOXIDE

V. N. SOKOLOV, G. M. KHVOSTIK, I. Ya. PODDUBNYI, G. P. KONDRATENKOV and G. K. GREBENSHIKOV

Lebedev Institute of Synthetic Rubber, Leningrad L-35 (U.S.S.R.) (Received September 19th, 1972)

SUMMARY

The interaction between DMSO and crotyl- or allyl-palladium halides involves a downfield shift of all the absorption lines in the ¹³C NMR spectra, with the signal due to DMSO also being shifted downfield. Investigations of the temperature and concentration dependence of the electrical conductivity together with electrodialysis studies of the complex $({}^{14}C_4H_7Pd{}^{36}Cl)_2 + DMSO$ indicate that the downfield shift arises from a cleavage of the Cl⁻ ion and the formation of the cation C₄H₇PdDMSO⁺₂.

The kinetic parameters of the exchange between DMSO and the complex have been evaluated.

INTRODUCTION

It has been shown¹ that the ¹³C NMR spectra of allylpalladium chloride in dimethylsulfoxide (DMSO) solution differ from those measured in CDCl₃ solution in that the C_1 , C_2 and C_3 absorption signals are shifted downfield. Similar shifts were also observed in the ¹³C spectra of crotylpalladium halides.

The changes in the ¹H NMR spectra associated with the use of DMSO as a solvent have already been reported, the observed equivalence of the allyl-group methyl protons being accounted for by "rotation" of the protons of the σ -allyl compound formed in the reaction of the complex with the ligand².

On the basis of a simultaneous change in the ¹H NMR spectra and the electrical conductivity, it has been suggested that the spectrum of allylpalladium chloride in DMSO may be explained in terms of a rapid exchange of various complex species, including ionic species^{3,4}.

An attempt has been made in the present study to investigate in greater detail the dependence of the ¹H and ¹³C NMR spectra and electrical conductivity of crotylpalladium chloride on the concentration of added DMSO and the temperature. The nature of the ions formed in the system has been investigated by electrodialysis experiments using samples of the complex in which both the allyl group and chloride were labelled, *i.e.* $({}^{14}C_4H_7Pd^{36}Cl)_2$.

EXPERIMENTAL

Electrodialysis of the complex was carried out in a three-cell dialyzer divided by membranes; a given amount of the "labelled" complex was placed in the centre cell and, after switching on the power, samples were withdrawn from the cathode, anode and central cells at definite time intervals using a microsyringe.

Radioactivity measurements were made using a Beckman LS-250 liquid scintillation spectrometer.

The technique used to obtain the NMR spectral measurements has already been described in Part II of this series⁸.

RESULTS AND DISCUSSION

The ¹³C NMR spectrum of allylpalladium chloride in CDCl₃ (Fig. 1a) consists of an asymmetric quartet at δ 62.8 ppm and a doublet at δ 111 ppm (the exact parameter values of the spectra being given in Fig. 1). The quartet corresponds to absorption of C₁ and C₂ equivalent nuclei with H^I, H^{II}, H^V and H^{IV} splitting whilst the doublet corresponds to equivalent C₂ nuclei with H^{III} splitting. Use of broad-band decoupling transforms the spectrum into two singlets, with shifts occurring exactly in the centre of gravity of the corresponding multiplets (Fig. 1b).

The addition of DMSO to the CDCl₃ solution of the complex results in the whole spectrum being shifted downfield (with the C_1 and C_3 signals shifting to a greater extent), the extent of the shift being proportional to the concentration of added ligand (Fig. 2).

Using DMSO- d_6 as the solvent results in both the downfield shift and the shift between individual signals attaining a maximum value; the absorption signal attributable to $C_1 + C_3$ is transformed from a quartet into a symmetric triplet ($J({}^{13}C-H)$ 161 Hz), the lines being broadened as a result of H^I, H^{II}, H^{IV} and H^V proton exchange (see description of the ¹H NMR spectrum under similar conditions²). The doublet lines attributable to the C_2 nuclei remain narrow, but when spin-spin decoupling is utilized (Fig. 1d) the spectrum is transformed into two singlets.

Fig. 2. (a) $C_{1,3}$ and (b) C_2 chemical shifts in the ¹³C NMR spectrum of allylpalladium chloride in CDCl₃ as a function of the DMSO concentration.

The spectrum of $(\pi$ -C₄H₇PdCl)₂ in CDCl₃ (Fig. 3a) consists of four groups of signals, *i.e.*, a symmetric quartet at δ 18.4 ppm due to the CH₃ group, an asymmetric triplet due to the CH₂ group (δ 58.4 ppm) and two doublets at δ 81.6 ppm (C₃) and at δ 111.6 ppm (C₂) which, in turn, are further split due to long-range ¹³C-C-H coupling

Fig. 3. The ¹³C NMR spectrum of crotylpalladium chloride. (a) $(\pi$ -C₄H₇PdCl)₂ in CDCl₃; (b) $(\pi$ -C₄H₇PdCl)₂ in CDCl₃ as obtained with broad-band decoupling; (c) $(\pi$ -C₄H₇PdCl)₂ in DMSO; (d) $(\pi$ -C₄H₇PdCl)₂ in DMSO as obtained with broad-band decoupling.

(an exact assignment of long-range coupling constants was not attempted).

The spectrum obtained with broad-band decoupling consists of four singlets, the shift being in the centre of the corresponding multiplets (Fig. 3b).

The NMR spectra of $(\pi - C_4 H_7 PdBr)_2$ and $(\pi - C_4 H_7 PdI)_2$ in CDCl₃ are similar to that of $(\pi - C_4 H_7 PdCl)_2^{1}$. The position of the CH₃ group is little affected by the nature of the halogen (a downfield shift of 1.7 ppm occurs with $(\pi - C_4 H_7 PdI)_2$ in comparison to $(\pi - C_4 H_7 PdCl)_2$. Comparison of the series Cl, Br and I indicates that the C₃ carbon signal is shifted downfield by 6.2 ppm, the position of the central C₂ carbon

Fig. 4. Plots of $1/\tau_{M_2}$ (a) as a function of the DMSO concentration in CDCl₃ and (b) as a function of $(\pi - C_4H_7PdCl)_2^{-\frac{1}{2}}$ concentration in C_6H_6 .

absorption being virtually independent of the nature of halogen and the same for allyl and crotyl groups in a given solvent.

On heating a solution of allylpalladium chloride in DMSO, the triplet attributable to the $C_1 + C_3$ nuclei in the undecoupled spectrum narrows due to an increase in the exchange rate of the H^I, H^{II}, H^{IV} and H^V protons. Similarly, on heating a solution of crotylpalladium chloride in DMSO the broadened triplet attributable to the C_2 nuclei narrows with the simultaneous disappearance of the ¹³C-C-H long-range coupling for the C_2 and C_3 nuclei which is clearly visible at 20°C in chloroform solution.

Heating allylpalladium chloride in DMSO also results in the absorption signals of nuclei $C_{1,3}$ and C_2 being slightly shifted upfield (~32 Hz).

Varying the concentration of DMSO (=L) at constant $(C_4H_7PdCl)_2$ (=M₂) concentration and varying the concentration of (M_2) at constant [L] indicates that the exchange rate is directly proportional to the concentration of DMSO (Fig. 4a) and to the square-root of the concentration of the dimer complex (Fig. 4b).

Of the possible kinetic schemes for ligand-complex interaction, the following were examined:

$$M_2 + L \rightleftharpoons M_2 L$$

Case (B)

$$M_{2} \xrightarrow[k-1]{k-1} 2 M$$
$$M + L \xrightarrow[k-2]{k-2} ML$$

(1)

(2)

Case(C)

$$M_2 + L \rightleftharpoons ML + M$$
$$M + L \rightleftharpoons ML$$

Case (A), which suggests that $1/[M_2] \propto 1/\tau_{M_2}$, is not in agreement with the experimental observations.

These observations are, in fact, best explained in terms of case (B), provided that $v_{+2} \ll v_{-1}$ and that step +2 in the process is rate determining. Hence

$$-\frac{d[M_2]}{d\tau} = k_{+2}[L][M] = \frac{1}{2}k_{+2} \cdot K_1^{\frac{1}{2}}[M_2]^{\frac{1}{2}}$$

where K_1 is the equilibrium constant for reaction (1), and therefore

$$\frac{1}{\tau_{M_2}} = \frac{1}{2} k_{+2} K_1^{\dagger} [L] [M_2]^{-\frac{1}{2}}$$
(3)

When $L/Pd \le 1$, the absorption signal due to DMSO in the ¹H NMR spectrum is shifted downfield. This shift decreases as the L/Pd ratio increases until at L/Pd = 1it practically coincides with the shift of free DMSO. This suggests that (a) a rapid (on an NMR time scale) exchange occurs between the ligand and the complex over the whole concentration range and (b) the equilibrium lies significantly towards the free components.

Hence, combining equations (1) and (2) with the expression for the collapsed signal shift when rapid exchange occurs gives

$$\Delta \mathcal{L} = \frac{K_2 [M]}{1 + K_2 [N]}$$

or

$$\frac{1}{\Delta L} = \frac{1}{K_2 \Delta ML} \cdot \frac{1}{[M]} + \frac{1}{\Delta ML}$$

where

$$\Delta L = \delta_{exp.} - \delta_L$$
$$\Delta ML = \delta_{MI} - \delta_{em}$$

But from equation (1). $[M] \simeq K_1^{\ddagger} \cdot [M_2]_0^{\ddagger}$ Therefore

$$\frac{1}{\Delta L} = \frac{1}{K_2 \Delta M L} - \frac{1}{K_1^{\ddagger} \cdot [M_2]_0^{\ddagger}} + \frac{1}{\Delta M L}$$
(4)

The dependence of $1/\Delta L$ on $[M_2]^{-\frac{1}{2}}$ is represented by the straight line in Figure 5, the intercept being equal to $1/\Delta ML$ and, hence, $\Delta ML = 50$ Hz. From the slope of this it has been found that $K_2 \cdot K_1^{\frac{1}{2}} = 0.74$.

Although equation (4) does not enable a decision to be made between the schemes involving the formation of ML, it excludes case (A), for this would require $1/\Delta L$ to be proportional to $1/\lceil M_2 \rceil$.

However, the relationship between the exchange kinetics and the collapsed

380

Fig. 5. A plot of ΔL^{-1} as a function of $[M_2]^{-\frac{1}{2}}$. Solvent C₆H₆; temperature 20°.

signal shifts suggests that case (B) is more consistent with the experimental data obtained.

These results do not agree with the conclusions reached by Mann *et al.*⁶ who, on the basis of the ¹³C NMR spectra of allylpalladium chloride, questioned the existence of the π -allylic structure, *i.e.* the structure with the electron density uniformly distributed between the three carbon atoms.

According to these authors, the experimental data may best be accounted for in terms of a rapid exchange involving two isomeric π , σ forms.

On the basis of this suggestion, the π -allyl chloride complex might be expected to be highly dissociated, yet our molecular weight measurements indicate that the complex is dimeric within the limits of experimental error. Indirect determination of K_1 gave a value of $\sim 10^{-3}$ mol/l in good agreement with the value of 4×10^{-3} mol/l found by Syrkin and co-workers⁷.

Variation in temperature and in concentration of the complex should affect the rates of the processes. However, no changes in the ¹³C and ¹H spectra (broadening and splitting of lines etc.) were observed as the temperature of a $(C_3H_5PdCl)_2$ solution in CDCl₃ was decreased to the freezing point.

The electrical conductivity of allylpalladium chloride in $CHCl_3$ at a constant complex concentration increases as the square of the concentration of DMSO added to the solution (Fig. 6a) and as the square-root of the complex concentration at a constant value of [L] (Fig. 6b). This suggests that the electrical conductivity arises from the dissociation of the monomeric species formed as a result of the decomposi-

382

Fig. 6. The electrical conductivity of allyipalladium chloride as a function of (a) the DMSO concentration and (b) the absolute concentration of $(\pi - C_3H_5PdCl)$.

tion of bis(π -allylpalladium chloride) rather than from direct ionic dissociation of the complex.

The dependence of the electrical conductivity on $[L]^2$ in CHCl₃ solution suggests that before dissociation occurs a molecule of the complex adds approximately two atoms of DMSO.

To investigate the nature of the ions formed, electrodialysis studies were undertaken using a solution of the double-labelled complex, $(\pi^{-14}C_4H_7Pd^{36}Cl)_2$. Kinetic studies of the dialysis of this complex in DMSO solution demonstrated that the flow rates of ¹⁴C and ^{.36}Cl in both cells were practically identical at a given temperature.

From general considerations it follows that ion formation may result from cleavage of either a Pd-C or a Pd-Cl bond (equations (6) and (5) respectively).

$$[\operatorname{RPdX}]_{2} + nL \underset{+L}{\rightleftharpoons} \operatorname{RPdXL}_{n} \underset{k-5}{\overset{k+5}{\underset{k-5}{\underset{k-6}{\atopk-6}{\underset{k-6}{\underset{k-6}{\underset{k-6}{\underset{k-6}{k-6}{\underset{k-6}{\atopk-$$

$$R^- + PdXL_{n+1}^+$$
 (6)

or from disproportionation of the complex:

$$[\operatorname{RPdX}]_2 \stackrel{L_n}{\rightleftharpoons} [\operatorname{RPdL}_n]^+ + [\operatorname{RPdX}_2]^-$$
(7)

The ratio of ${}^{13}C$ to ${}^{36}Cl$ measured experimentally and the fact that no Pd was found in the anode cell rule out the possibility of reaction (7).

When a toluene solution was used, the rate of ion diffusion decreased by two orders of magnitude at DMSO/Pd = 20, the concentration of ¹⁴C in the cathode cell being one order of magnitude higher than that in the anode cell.

These results and the dependence of the electrical conductivity on [L]² under

the conditions indicated above suggest that the main reaction in this case is reaction (5) with n=2.

For reaction (6) to be important, a high concentration of DMSO would be necessary, conditions which may only be achieved if DMSO is used as the solvent.

When excess $(\pi$ -C₄H₇PdCl) is present, the absorption signal due to DMSO in the ¹H NMR spectra is shifted downfield due to complex formation and electron transfer to the palladium atom. As a result of this transformation the allyl group signal in the ¹H and ¹³C NMR spectra is also shifted downfield, *i.e.* under these conditions the allyl group also acts as an electron donor, while the chloride ion appears to act as an electron acceptor.

The only reaction which can possibly give rise to such shifts is reaction (5) which involves cleavage of a chloride ion and the formation of the symmetric cationic allylic complex. Further increase in the concentration of DMSO favours reaction (6), the downfield shift of the resulting cationic complex signal being compensated by an allyl anion shift. Heating the complex in a DMSO solution results in an increase in the contribution of reaction (6) and gives rise to an upfield shift.

REFERENCES

- 1 V. N. Sokolov, G. M. Khvostik, I. Ya. Poddubnyi and G. P. Kondratenkov, Dokl. Akad. Nauk SSSR, 204 (1972) 120.
- 2 J. Chien and H. Dehm, Chem. Ind., (1961) 745.
- 3 G. M. Khostik, I. Ya. Poddubnyi, V. N. Sokolov and G. P. Kondratenkov, Dokl. Akad. Nauk SSSR, 195 (1970) 864.
- 4 V. N. Solokov, G. M. Khvostik, I. Ya. Poddubnyi and G. P. Kondratenkov, J. Organometal. Chem., 29 (1971) 313.
- 5 K. Vrieze, P. Cossee, A. P. Praat and C. Hilbers, J. Organometal. Chem., 11 (1968) 353.
- 6 B. E. Mann, R. Pietropaolo and B. L. Shaw, Chem. Commun., (1971) 790.
- 7 L.A. Katsman, M. N. Vargaftic, A. P. Belov and Ja. K. Syrkin Izv. Akad. Nauk SSSR, Ser. Khim., 5 (1971) 1091.
- 8 V. N. Sokolov, G. M. Khvostic, I. Ya. Poddubnyi and G. P. Kondratenkov, J. Organometal. Chem., 54 (1973) 61.